66 lines
1.5 KiB
Python
66 lines
1.5 KiB
Python
from Perceptron import Perceptron
|
|
from random import Random
|
|
from Dataset import Dataset
|
|
|
|
rand = Random()
|
|
#data = Dataset(open("input.txt").read().split('\n'),
|
|
# open("target.txt").read().split('\n'))
|
|
learn_rate = 0.01
|
|
|
|
p = Perceptron()
|
|
#i = data.inputs
|
|
|
|
|
|
def line_perceptron():
|
|
p.add_input("1", 1, rand.uniform(-1, 1))
|
|
p.add_input("2", 1, rand.uniform(-1, 1))
|
|
|
|
def answer(p_x, p_y):
|
|
if p_y > calc_y(p_x):
|
|
return 1
|
|
else:
|
|
return -1
|
|
|
|
|
|
def calc_y(p_x):
|
|
return p_x + 2
|
|
|
|
for ind in range(0, 1000):
|
|
x = rand.randint(-640 / 2, 640 / 2)
|
|
y = rand.randint(-480 / 2, 480 / 2)
|
|
print(x, y)
|
|
p.input(x, y)
|
|
print("error: %f" % p.guess(answer(x, y), learn_rate))
|
|
|
|
for i in range(0, 1000):
|
|
x = int(input("x: "))
|
|
y = int(input("y: "))
|
|
p.input(x, y)
|
|
if p.activation() == 1:
|
|
print("TRUE")
|
|
else:
|
|
print("FALSE")
|
|
|
|
|
|
def and_perceptron():
|
|
p.add_input("1", 1, rand.uniform(-1, 1))
|
|
p.add_input("2", 1, rand.uniform(-1, 1))
|
|
p.add_input("bias", 1, rand.uniform(-1, 1))
|
|
|
|
# train
|
|
for ind in range(0, 500):
|
|
i = data.inputs
|
|
for key in data.inputs:
|
|
p.input(i[key].value1, i[key].value2)
|
|
print("error: %f" % p.guess(i[key].target, learn_rate))
|
|
|
|
for i in range(0, 1000):
|
|
x = input("Arg1: ")
|
|
y = input("Arg2: ")
|
|
p.input(x, y)
|
|
if p.activation() == 1:
|
|
print("TRUE")
|
|
else:
|
|
print("FALSE")
|
|
|
|
line_perceptron() |