from Perceptron import Perceptron from random import Random from Dataset import Dataset from Graph import * graph = Graph(640, 480, "Perceptron") graph.drawLine(Point(-1000, -1000 + 20), Point(1000, 1000 + 20)) rand = Random() data = Dataset(open("input.txt").read().split('\n'), open("target.txt").read().split('\n')) learn_rate = 0.01 p = Perceptron() i = data.inputs def line_perceptron(): p.add_input("1", 1, rand.uniform(-1, 1)) p.add_input("2", 1, rand.uniform(-1, 1)) def answer(p_x, p_y): if p_y > calc_y(p_x): return 1 else: return -1 def calc_y(p_x): return p_x + 2 for ind in range(0, 1000): x = rand.randint(-640 / 2, 640 / 2) y = rand.randint(-480 / 2, 480 / 2) print(x, y) p.input(x, y) print("error: %f" % p.guess(answer(x, y), learn_rate)) for i in range(0, 1000): x = int(input("x: ")) y = int(input("y: ")) p.input(x, y) if p.activation() == 1: graph.win.plot(x, y, "green") print("TRUE") else: graph.win.plot(x, y, "red") print("FALSE") def and_perceptron(): p.add_input("1", 1, rand.uniform(-1, 1)) p.add_input("2", 1, rand.uniform(-1, 1)) p.add_input("bias", 1, rand.uniform(-1, 1)) # train for ind in range(0, 500): i = data.inputs for key in data.inputs: p.input(i[key].value1, i[key].value2) print("error: %f" % p.guess(i[key].target, learn_rate)) for i in range(0, 1000): x = input("Arg1: ") y = input("Arg2: ") p.input(x, y) if p.activation() == 1: print("TRUE") else: print("FALSE") line_perceptron()